4.5 Article

Characterization and applications of CataCleave probe in real-time detection assays

Journal

ANALYTICAL BIOCHEMISTRY
Volume 333, Issue 2, Pages 246-255

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ab.2004.05.037

Keywords

-

Ask authors/readers for more resources

Cycling probe technology (CPT), which utilizes a chimeric DNA-RNA-DNA probe and RNase H, is a rapid, isothermal probe amplification system for the detection of target DNA. Upon hybridization of the probe to its target DNA, RNase H cleaves the RNA portion of the DNA/RNA hybrid. Utilizing CPT, we designed a catalytically cleavable fluorescence probe (CataCleave probe) containing two internal fluorophores. Fluorescence intensity of the probe itself was weak due to Forster resonance energy transfer. Cleavage of the probe by RNase H in the presence of its target DNA caused enhancement of donor fluorescence, but this was not observed with nonspecific target DNA. Further, RNase H reactions with CataCleave probe exhibit a catalytic dose-dependent response to target DNA. This confirms the capability for the direct detection of specific target DNA through a signal amplification process. Moreover, CataCleave probe is also ideal for detecting DNA amplification processes, such as polymerase chain reaction (PCR) and isothermal rolling circle amplification (RCA). In fact, we observed signal enhancement proportional to the amount of RCA product formed. We were also able to monitor real-time PCR by measuring enhancement of donor fluorescence. Hence, CataCleave probe is useful for real-time monitoring of both isothermal and temperature-cycling nucleic acid amplification methods. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available