4.8 Article

Adenoviral gene transfer with soluble vascular endothelial growth factor receptors impairs angiogenesis and perfusion in a murine model of hindlimb ischemia

Journal

CIRCULATION
Volume 110, Issue 16, Pages 2424-2429

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.CIR.0000145142.85645.EA

Keywords

collateral circulation; genetics; ischemia; angiogenesis; perfusion

Funding

  1. NCI NIH HHS [1 R01 CA95654-01] Funding Source: Medline
  2. NHLBI NIH HHS [R01 HL-63685, R01 HL-75774] Funding Source: Medline
  3. NIAID NIH HHS [P01AI50153] Funding Source: Medline

Ask authors/readers for more resources

Background-The purpose of the current study was to examine the contribution of endogenous vascular endothelial growth factor (VEGF) to ischemia-induced angiogenesis and perfusion. Methods and Results-C57BL/6J mice (n=28) were subjected to unilateral hindlimb ischemia after intravenous injection of recombinant adenoviruses (10(9) plaque-forming units) encoding the ligand-binding ectodomain of VEGF receptor 1 (VEGFR1/Ad Flt1), VEGF receptor 2 (VEGFR2/Ad Flk1-Fc), a control murine IgG2alpha Fc fragment (Ad Fc), or vehicle (phosphate-buffered saline). Hindlimb perfusion was assessed by both laser Doppler and fluorescent microsphere injection 10 days after surgery. The role of endogenous VEGF in ischemia-induced angiogenesis and arteriogenesis was measured by capillary density and microangiography, respectively. Adenoviral gene transfer with soluble VEGFRs significantly attenuated hindlimb perfusion as assessed by laser Doppler and microsphere analysis (P<0.05). Furthermore, soluble VEGFRs significantly reduced ischemia-induced angiogenesis and collateral growth and inhibited histological recovery of muscle tissue. Adverse events consistent with ongoing vascular insufficiency such as limb necrosis or gangrene were observed only in animals expressing soluble VEGFRs and not in control animals. Conclusions-Systemic, soluble receptor-mediated VEGF inhibition indicates an essential role for endogenous VEGF during postischemic angiogenesis and hindlimb perfusion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available