4.7 Article

Electric field and temperature effects on water in the narrow nonpolar pores of carbon nanotubes

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 121, Issue 16, Pages 7955-7965

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1796271

Keywords

-

Ask authors/readers for more resources

Water molecules in the narrow cylindrical pore of a (6,6) carbon nanotube form single-file chains with their dipoles collectively oriented either up or down along the tube axis. We study the interaction of such water chains with homogeneous electric fields for finite closed and infinite periodically replicated tubes. By evaluating the grand-canonical partition function term-by-term, we show that homogeneous electric fields favor the filling of previously empty nanotubes with water from the bulk phase. A two-state description of the collective water dipole orientation in the nanotube provides an excellent approximation for the dependence of the water-chain polarization and the filling equilibrium on the electric field. The energy and entropy contributions to the free energy of filling the nanotube were determined from the temperature dependence of the occupancy probabilities. We find that the energy of transfer depends sensitively on the water-tube interaction potential, and that the entropy of one-dimensionally ordered water chains is comparable to that of bulk water. We also discuss implications for proton transfer reactions in biology. (C) 2004 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available