4.7 Article

Roles of p-ERM and Rho-ROCK signaling in lymphocyte polarity and uropod formation

Journal

JOURNAL OF CELL BIOLOGY
Volume 167, Issue 2, Pages 327-337

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.200403091

Keywords

-

Categories

Ask authors/readers for more resources

Front-rear asymmetry in motile cells is crucial for efficient directional movement. The uropod in migrating lymphocytes is a posterior protrusion in which several proteins, including CD44 and ezrin/radixin/moesin (ERM) are concentrated. In Ell T-lymphoma cells, Thr567 phosphorylation in the COOH-terminal domain of ezrin regulates the selective localization of ezrin in the uropod. Overexpression of the phosphorylation-mimetic T567D ezrin enhances uropod size and cell migration. T567D ezrin also induces construction of the CD44-associated polar cap, which covers the posterior cytoplasm in staurosporine-treated, uropod-disrupted Ell cells or in naturally unpolarized X63.653 myeloma cells in an actin cytoskeleton-dependent manner. Rho-associated coiled coil-containing protein kinase (ROCK) inhibitor Y-27632 disrupts the uropod but not the polar cap, indicating that Rho-ROCK signaling is required for posterior protrusion but not for ERM phosphorylation. Phosphorylated ezrin associates with Dbl through its NH2-terminal domain and causes Rho activation. Moreover, constitutively active Q63L RhoA is selectively localized in the rear part of the cells. Thus, phosphorylated ERM has a potential function in establishing plasma membrane posteriority in the induction of the uropod in T lymphocytes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available