4.6 Article

Single-walled carbon nanotubes embedded in oriented polymeric nanofibers by electrospinning

Journal

LANGMUIR
Volume 20, Issue 22, Pages 9852-9855

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la048536b

Keywords

-

Ask authors/readers for more resources

The electrospinning process was used successfully to embed single-walled carbon nanotubes (SWCNTs) in a poly(ethylene oxide) (PEO) matrix, forming composite nanofibers. Initial dispersion of SWCNTs in water was achieved by the use of an amphiphilic alternating copolymer of styrene and sodium maleate. The resulting dispersions were stable, having a dark, smooth, ink-like appearance. For electrospinning, the dispersions were mixed with PEO solution in an ethanol/water mixture. The distribution and conformation of the nanotubes in the nanofibers were studied by transmission electron microscopy (TEM). Oxygen plasma etching was used to expose the nanotubes within the nanofibers to facilitate direct observation. Nanotube alignment within the nanofibers was shown to depend strongly on the quality of the initial dispersions. Well-dispersed and separated nanotubes were embedded in a straight and aligned form, while entangled nonseparated nanotubes were incorporated as dense aggregates. X-ray diffraction demonstrated a high degree of orientation of the PEO crystals in the electrospun nanofibers with embedded SWCNTs. This result is in pronounced distinction to the detrimental effect of incorporation of multiwalled carbon nanotubes on polymer orientation in electrospun nanofibers, as reported previously.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available