4.4 Article

Conformational analysis of chirally deuterated tunicamycin as an active site probe of UDP-N-Acetylhexosamine:Polyprenol-P N-acetylhexosamine-1-P translocases

Journal

BIOCHEMISTRY
Volume 43, Issue 42, Pages 13248-13255

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi048327q

Keywords

-

Ask authors/readers for more resources

Tunicamycins are potent inhibitors of UDP-N-acetyl-D-hexosamine:polyprenol-phosphate N-acetylhexosamine-1-phosphate translocases (D-HexNAc-1-P translocases), a family of enzymes involved in bacterial cell wall synthesis and eukaryotic protein N-glycosylation. Structurally, tunicamycins consist of an 11-carbon dialdose core sugar called tunicamine that is N-linked at C-1' to uracil and O-linked at C-11' to N-acetylglucosamine (GlcNAc). The C-11' O-glycosidic linkage is highly unusual because it forms an alpha/beta anomeric-to-anomeric linkage to the 1-position of the GlcNAc residue. We have assigned the H-1 and C-13 NMR spectra of tunicamycin and have undertaken a conformational analysis from rotating angle nuclear Overhauser effect (ROESY) data. In addition, chirally deuterated tunicamycins produced by fermentation of Streptomyces chartreusis on chemically synthesized, monodeuterated (S-6)-[H-2(1)]glucose have been used to assign the geminal H-6'a, H-6'b methylene bridge of the 11-carbon dialdose sugar, tunicamine. The tunicamine residue is shown to assume pseudo-D-ribofuranose and C-4(1) pseudo-D-galactopyranosaminyl ring conformers. Conformation about the C-6' methylene bridge determines the relative orientation of these rings. The model predicts that tunicamycin forms a right-handed cupped structure, with the potential for divalent metal ion coordination at 5'-OH, 8'-OH, and the pseudogalactopyranosyl 7'-O ring oxygen. The formation of tunicamycin complexes with various divalent metal ions was confirmed experimentally by MALDI-TOF mass spectrometry. Our data support the hypothesis that tunicamycin is a structural analogue of the UDP-D-HexNAc substrate and is reversibly coordinated to the divalent metal cofactor in the D-HexNAc-1-P translocase active site.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available