4.5 Article Proceedings Paper

Theory and simulation of short-range models of globular protein solutions

Journal

JOURNAL OF PHYSICS-CONDENSED MATTER
Volume 16, Issue 42, Pages S4923-S4936

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/16/42/010

Keywords

-

Ask authors/readers for more resources

We report theoretical and simulation studies of phase coexistence in model globular protein solutions, based on short-range, central, pair potential representations of the interaction among macro-particles. After reviewing our previous investigations of hard-core Yukawa and generalized Lennard-Jones potentials, we report more recent results obtained within a DLVO-like description of lysozyme solutions in water and added salt. We show that a one-parameter fit of this model, based on static light scattering and self-interaction chromatography data in the dilute protein regime, yields demixing and crystallization curves in good agreement with experimental protein-rich-protein-poor and solubility envelopes. The dependence of cloud and solubility point temperatures of the model on the ionic strength is also investigated. Our findings highlight the minimal assumptions on the properties of the microscopic interaction sufficient for a satisfactory reproduction of the phase diagram topology of globular protein solutions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available