4.8 Article

Defining the position of the switches between replicative and bypass DNA polymerases

Journal

EMBO JOURNAL
Volume 23, Issue 21, Pages 4342-4352

Publisher

WILEY
DOI: 10.1038/sj.emboj.7600438

Keywords

Pol III holoenzyme; Pol V; polymerase switch; processivity factor beta-clamp; RecA filament

Ask authors/readers for more resources

Cells contain specialized DNA polymerases that are able to copy past lesions with an associated risk of generating mutations, the major cause of cancer. Here, we reconstitute translesion synthesis (TLS) using the replicative (Pol III) and major bypass ( Pol V) DNA polymerases from Escherichia coli in the presence of accessory factors. When the replicative polymerase disconnects from the template in the vicinity of a lesion, Pol V binds the blocked replication intermediate and forms a stable complex by means of a dual interaction with the tip of the RecA filament and the beta-clamp, the processivity factor donated by the blocked Pol III holoenzyme. Both interactions are required to confer to Pol V the processivity that will allow it synthesize, in a single binding event, a TLS patch long enough to support further extension by Pol III. In the absence of these accessory factors, the patch synthesized by Pol V is too short, being degraded by the Pol III-associated exonuclease activity that senses the distortion induced by the lesion, thus leading to an aborted bypass process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available