4.8 Article

All-optical control of light on a silicon chip

Journal

NATURE
Volume 431, Issue 7012, Pages 1081-1084

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature02921

Keywords

-

Ask authors/readers for more resources

Photonic circuits, in which beams of light redirect the flow of other beams of light, are a long-standing goal for developing highly integrated optical communication components(1-3). Furthermore, it is highly desirable to use silicon - the dominant material in the microelectronic industry - as the platform for such circuits. Photonic structures that bend, split, couple and filter light have recently been demonstrated in silicon(4,5), but the flow of light in these structures is predetermined and cannot be readily modulated during operation. All-optical switches and modulators have been demonstrated with III-V compound semiconductors(6,7), but achieving the same in silicon is challenging owing to its relatively weak nonlinear optical properties. Indeed, all-optical switching in silicon has only been achieved by using extremely high powers(8-15) in large or non-planar structures, where the modulated light is propagating out-of-plane. Such high powers, large dimensions and non-planar geometries are inappropriate for effective on-chip integration. Here we present the experimental demonstration of fast all-optical switching on silicon using highly light-confining structures to enhance the sensitivity of light to small changes in refractive index. The transmission of the structure can be modulated by up to 94% in less than 500 ps using light pulses with energies as low as 25 pJ. These results confirm the recent theoretical prediction(16) of efficient optical switching in silicon using resonant structures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available