4.8 Article

Intrinsic energy loss mechanisms in a cantilevered carbon nanotube beam oscillator

Journal

PHYSICAL REVIEW LETTERS
Volume 93, Issue 18, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.93.185501

Keywords

-

Ask authors/readers for more resources

Classical molecular dynamics is applied to study the energy dissipation (the Q factor) of the cantilever-type beam oscillators of single wall and double-walled carbon nanotubes (CNTs). The study finds that the Q factor of the CNT beam oscillator varies with the temperature T following the 1/T-0.36 dependence. For single wall CNT, the Q factor drops from 2 x 10(5) at 0.05 K to 1.5 x 10(3) at 293 K. The study further reveals that the weak interlayer binding strength and the interlayer commensurance significantly increases the energy dissipation in the double-walled CNT oscillator.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available