4.7 Article

Wild-type bone marrow cells ameliorate the phenotype of SOD1-G93A ALS mice and contribute to CNS, heart and skeletal muscle tissues

Journal

BRAIN
Volume 127, Issue -, Pages 2518-2532

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/brain/awh273

Keywords

amyotrophic lateral sclerosis; motor neuron; stem cells; transplantation; SOD

Ask authors/readers for more resources

Amyotrophic lateral sclerosis (ALS) is a progressive, lethal neurodegenerative disease without any effective therapy. To evaluate the potential of wild-type bone marrow (BM)-derived stem cells to modify the ALS phenotype, we generated BM chimeric Cu/Zn superoxide dismutase (SOD1) mice by transplantation of BM cells derived from mice expressing green fluorescent protein (GFP) in all tissues and from Thy1-YFP mice that express a spectral variant of GFP (yellow fluorescent protein) in neurons only. In the recipient cerebral cortex, we observed rare GFP+ and YFP+ neurons, which were probably generated by cell fusion, as demonstrated by fluorescence in situ hybridization (FISH) analysis, suggesting that this phenomenon is not limited to Purkinje cells. GFP-positive microglial cells were extensively present in both the brain and spinal cord of the affected animals. Completely differentiated and immature GFP+ myofibres were also present in the heart and skeletal muscles of SOD1 mice, confirming that BM cells can participate in striated muscle tissue regeneration. Moreover, wild-type BM chimeric SOD1 mice showed a significantly delayed disease onset and an increased life span, probably due to a positive 'non-neuronal environmental' effect rather than to neuronogenesis. This improvement in SOD1-G93A mouse survival is comparable with that previously obtained using some safer pharmacological agents. BM transplantation-related complications in humans preclude its clinical application for ALS treatment. However, our data suggest that further studies aimed at improving the degree of tissue chimerism by BM-derived cells may provide valuable insights into strategies to slow ALS progression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available