4.6 Article

Sera from patients with idiopathic dilated cardiomyopathy decrease ICa in cardiomyocytes isolated from rabbits

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00044.2004

Keywords

calcium channel; electrophysiology; patch clamp; heart failure; autoimmune disease

Ask authors/readers for more resources

Autoantibodies against muscarinic and adrenergic receptors have been found in the sera of patients with idiopathic dilated cardiomyopathy (IDC) and Chagas disease, but it is still unclear whether they can functionally interact with their respective receptors to modulate cardiac functions. In this study, our goal was to detect the presence of those antibodies in the sera of patients with IDC and characterize their electrophysiological effects on cardiomyocytes from rabbits. By using ELISA immunoassays, we detected high titers of antibodies against muscarinic M-2 receptors in the sera of all IDC patients, whereas the detection of antibodies against the beta1-receptor occurred in 50% of them. Electrophysiological experiments using the whole cell configuration of the patch-clamp technique showed that sera from 43% of IDC patients induced a significant decrease (similar to26%) in isoproterenol-stimulated L-type Ca2+ currents in rabbit ventricular myocytes, whereas the sera from healthy blood donors failed to do so. As expected, IDC sera also decreased the action potential duration (by 10.5%) due to a shortening of the plateau phase. Sera that reduced isoproterenol-stimulated L-type Ca2+ currents did not cause any effect on K+ currents. We conclude that sera from IDC patients have autoantibodies, which interact with muscarinic M-2 receptors of rabbit cardiomyocytes, acting in an agonist-like fashion. This action results in changes in electrogenesis, which, as often observed in patients with IDC, could initiate ventricular arrhythmias that lead to sudden death.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available