4.7 Article

Activation of the neuronal c-Abl tyrosine kinase by amyloid-β-peptide and reactive oxygen species

Journal

NEUROBIOLOGY OF DISEASE
Volume 17, Issue 2, Pages 326-336

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.nbd.2004.06.007

Keywords

c-Abl; neurotoxicity; p73; apoptosis; amyloid-beta-peptide

Categories

Ask authors/readers for more resources

The deposition and accumulation of amyloid-beta-peptide (Abeta) in the brain are considered a sine qua non for Alzheimer's disease. The experimental delivery of fibrilized Abeta serves as a cellular model for several facets of the disease including the induction of synaptic dysfunction and apoptosis. c-Abl kinase is involved in the regulation of apoptosis and its pro-apoptotic function is in part mediated by its interaction with p73, a p53 homologue. We found that c-Abl activation is involved in cell signals that regulate neuronal death response to Abeta fibrils. Abeta peptide fibrils induced an increase of the c-Abl activity in rat hippocampal neurons as well as an increase in nuclear p73 protein levels and the p73-c-Abl complex. The neuronal cell death induced by Abeta fibrils was prevented by the inhibition of c-Abl with imatinib mesylate (Gleevec or STI571) and by the inhibition c-Abl expression by RNAi. These results directly point to a therapeutic strategy for the treatment of Alzheimer's disease. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available