4.2 Article

Mechanical and structural properties of a novel hybrid heart valve scaffold for tissue engineering

Journal

ARTIFICIAL ORGANS
Volume 28, Issue 11, Pages 971-979

Publisher

BLACKWELL PUBLISHING INC
DOI: 10.1111/j.1525-1594.2004.00007.x

Keywords

polyhydroxyalkanoate; extracellular matrix; composite; heart valve; mechanical test; tissue engineering

Ask authors/readers for more resources

Hybrid heart valve scaffolds were fabricated from decellularized porcine aortic heart valve matrices and enhanced with bioresorbable polymers using different protocols: (i) dip coating of lyophilized decellularized matrices, and (ii) impregnation of wet decellularized matrices. The following polymers were evaluated: poly(4-hydroxybutyrate) and poly(3-hydroxybutyrate-co4-hydroxybutyrate). Tensile tests were conducted to assess the biomechanical behavior of valve leaflet strips. Suture retention strength was evaluated for the adjacent conduit. A pulse duplicator system was used for functional testing of the valves under physiological systemic load conditions. The properties of the hybrid structures were compared with native, decellularized, and glutaraldehyde-fixed specimens. Mechanisms of the polymer impregnation process were studied with IR spectroscopy, fluorescent microscopic imaging, and SEM. Altogether this study demonstrates the feasibility and improved biomechanical function of a novel hybrid heart valve scaffold for an application in tissue engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available