4.7 Article

MnSOD antisense treatment and exercise-induced protection against arrhythmias

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 37, Issue 9, Pages 1360-1368

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2004.07.025

Keywords

arrhythmia; ischemia; antioxidants; exercise; carbonyls; nitro-tyrosine; free radicals

Ask authors/readers for more resources

Exercise provides protection against ischemia-reperfusion (I-R)-induced arrhythmias, myocardial stunning, and infarction. An exercise-induced increase in myocardial manganese superoxide dismutase (MnSOD) activity has been reported to be vital for protection against infarction. However, whether MnSOD is essential for exercise-induced protection against ventricular arrhythmias is unknown. We determined the effects of preventing the exercise-induced increase in MnSOD activity on arrhythmias during I-R resulting in myocardial stunning. Male rats remained sedentary or were subjected to successive bouts of endurance exercise. During in vivo myocardial I-R, the incidence of arrhythmias was significantly lower in the exercise-trained rats than in the sedentary rats as evidenced by the arrhythmia. When exercised rats were pretreated with antisense oligonucleotides directed against MmSOD, protection from arrhythmias was attenuated. Moreover, I-R resulted in significant increases in nitro-tyrosine (NT) in the sedentary group. Exercise abolished this I-R-induced NT formation but this protection was unchanged by antisense treatment. Protein carbonyls were increased by I-R, but neither exercise nor antisense treatment impacted carbonyl formation. These data demonstrate that an exercise-induced increase in MnSOD activity is important for protection against arrhythmias. The mechanism by which MnSOD provides protection does not appear to be linked to protein nitrosylation or oxidation. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available