4.7 Article

CPEC induces erythroid differentiation of human myeloid leukemia K562 cells through CTP depletion and p38 MAP kinase

Journal

LEUKEMIA
Volume 18, Issue 11, Pages 1857-1863

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.leu.2403490

Keywords

CPEC; differentiation and p38 MAP kinase

Funding

  1. NIGMS NIH HHS [GM59767] Funding Source: Medline

Ask authors/readers for more resources

Cyclopentenyl cytosine ( CPEC) is a carbocyclic cytidine analog inhibitor of CTP synthetase and experimental drug for combination chemotherapy. CPEC treatment (50 nM) depleted intracellular CTP and induced a specific S-phase arrest and erythroid differentiation of human erythroleukemia K562 cells. The equilibrative nucleoside transporters (ENT1, 2) facilitated uptake of CPEC into K562 cells as evidenced by both NBMPR and dipyridamole inhibition of CPEC-mediated CTP depletion and erythroid differentiation. Incubation with the pyridinylimidazole p38 MAPK inhibitors, SB203580 or SB220025, suppressed both the CPEC-induced cell cycle arrest and differentiation of K562 cells. SB203580 also prevented the cell cycle arrest and erythroid differentiation of K562 cells induced by Leflunomide (LEF), a non-nucleoside inhibitor of the de novo pyrimidine pathway, without affecting LEF-induced depletion of pyrimidine pools. Finally, selective knockdown of p38 MAPK by using Smart Pool(TM) siRNA to p38 MAPK significantly decreased the CPEC-induced differentiation of K562 cells. These results suggest that endogenous activity of p38 MAP kinases may be required for committing K562 cells to cell cycle arrest and erythroid differentiation under conditions of CTP depletion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available