4.5 Article

Phylogenetic analysis of bacterial communities associated with larvae of the Atlantic halibut propose succession from a uniform normal flora

Journal

SYSTEMATIC AND APPLIED MICROBIOLOGY
Volume 27, Issue 6, Pages 728-736

Publisher

ELSEVIER GMBH
DOI: 10.1078/0723202042369929

Keywords

normal flora; bacterial community; 16S rRNA; DGGE; phylogeny; Atlantic halibut; aquaculture

Ask authors/readers for more resources

Halibut, the largest of all flatfishes is a valuable species with a great potential for aquaculture. Bacteria play an important role in regulating the health of the early life stages. The present article is the first broad-range molecular analysis of bacterial communities in larvae of the Atlantic halibut (Hippoglossus hippoglossus). DNA was extracted from larvae, water and silo biofilm from hatcheries in Norway, Scotland, Iceland and Canada. Eubacterial 16S rRNA gene fragments were amplified by polymerase chain reaction (PCR) with broad-range primers. Sequences spanning the hyper variable V3 region representing individual bacterial species were separated into community profiles by denaturing gradient gel electrophoresis (DGGE). The profiles revealed simple communities after hatching and bacterial succession following growth. Sequencing and phylogenetic analysis of excised DGGE bands suggested aerobic heterotrophs related to groups of Pseudomonas, Janthinobacterium and possibly Marinomonas to be the primary colonisers of the larvae. After onset of feeding, fermentative species (Vibrio) were detected as well. Comparative analysis of bacterial communities from different geographical regions indicated that larvae of the Atlantic halibut possess a distinct and specific normal flora.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available