4.4 Article

Controlling for the effects of history and nonequilibrium conditions in gene flow estimates in northern bullfrog (Rana catesbeiana) populations

Journal

GENETICS
Volume 168, Issue 3, Pages 1491-1506

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1534/genetics.104.027987

Keywords

-

Ask authors/readers for more resources

Nonequilibrium conditions due to either allopatry followed by secondary contact or recent range expansion can confound measurements of gene flow among populations in previously glaciated regions. We determined the scale at which gene flow can be estimated among breeding aggregations of bullfrogs (Rana catesbeiana) at the northern limit of their range in Ontario, Canada, using seven highly polymorphic DNA microsatellite loci. We first identified breeding aggregations that likely share a common history, determined from the pattern of allelic richness, factorial correspondence analysis, and a previously published mtDNA phylogeography, and then tested for regional equilibrium by evaluating the association between pairwise F-ST and geographic distance. Regional breeding aggregations in eastern Ontario separated by less than or equal to100 km were determined to be at or near equilibrium. High levels of gene flow were measured using traditional 1 statistics and likelihood estimates of Nm. Similarly high levels of recent migration (past one to three generations) were estimated among the breeding aggregations rising nonequilibrium methods. We also show that, in many cases, breeding aggregations separated by tip to tens of kilometers are not genetically distinct enough to be considered separate genetic populations. These results have important implications both for the identification of independent populations and in assessing the effect of scale in detecting patterns of genetic equilibrium and gene flow.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available