4.4 Article

Taste receptor cells express pH-sensitive leak K+ channels

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 92, Issue 5, Pages 2909-2919

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.01198.2003

Keywords

-

Ask authors/readers for more resources

Two-pore domain K+ channels encoded by genes KCNK1-17 (K2p1-17) play important roles in regulating cell excitability. We report here that rat taste receptor cells (TRCs) highly express TASK-2 (KCNK5; K2p5.1), and to a much lesser extent TALK-1 (KCNK16; K2p16.1) and TASK-1 (KCNK3; K2p3.1), and suggest potentially important roles for these channels in setting resting membrane potentials and in sour taste transduction. Whole cell recordings of isolated TRCs show that a leak K+ (K-leak) current in a subset of TRCs exhibited high sensitivity to acidic extracellular pH similar to reported properties of TASK-2 and TALK-1 channels. A drop in bath pH from 7.4 to 6 suppressed 90% of the current, resulting in membrane depolarization. K+ channel blockers, BaCl2, but not tetraethylammonium (TEA), inhibited the current. Interestingly, resting potentials of these TRCs averaged -70 mV, which closely correlated with the amplitude of the pH-sensitive K-leak, suggesting a dominant role of this conductance in setting resting potentials. RT-PCR assays followed by sequencing of PCR products showed that TASK-1, TASK-2, and a functionally similar channel, TALK-1, were expressed in all three types of lingual taste buds. To verify expression of TASK channels, we labeled taste tissue with antibodies against TASK-1, TASK-2, and TASK-3. Strong labeling was seen in some TRCs with antibody against TASK-2 but not TASK-1 and TASK-3. Consistent with the immunocytochemical staining, quantitative real-time PCR assays showed that the message for TASK-2 was expressed at significantly higher levels (10-100 times greater) than was TASK-1, TALK-1, or TASK-3. Thus several K-2P channels, and in particular TASK-2, are expressed in rat TRCs, where they may contribute to the establishment of resting potentials and sour reception.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available