4.7 Article

High pressure-temperature Raman measurements of H2O melting to 22 GPa and 900 K

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 121, Issue 17, Pages 8423-8427

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1784438

Keywords

-

Ask authors/readers for more resources

The melting curve of H2O has been measured by in situ Raman spectroscopy in an externally heated diamond anvil cell up to 22 GPa and 900 K. The Raman-active OH-stretching bands and the translational modes of H2O as well as optical observations are used to directly and reliably detect melting in ice VII. The observed melting temperatures are higher than previously reported x-ray measurements and significantly lower than recent laser-heating determinations. However, our results are in accord with earlier optical determinations. The frequencies and intensities of the OH-stretching peaks change significantly across the melting line while the translational mode disappears altogether in the liquid phase. The observed OH-stretching bands of liquid water at high pressure are very similar to those obtained in shock-wave Raman measurements. (C) 2004 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available