4.5 Article

An investigation of the neuroprotective effects of tetracycline derivatives in experimental models of retinal cell death

Journal

MOLECULAR PHARMACOLOGY
Volume 66, Issue 5, Pages 1113-1122

Publisher

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/mol.104.001081

Keywords

-

Ask authors/readers for more resources

The purpose of this study was to determine the efficacy and putative mechanisms of action of tetracycline and minocycline in inhibiting retinal cell apoptosis after glutamate-induced excitotoxicity and trophic factor deprivation in a retinal cell line (E1A-NR.3) and in primary mixed retinal cell cultures. In addition, a differentiated PC-12 cell line was used to determine whether minocycline was neuroprotective after trophic withdrawal in a pure neuronal cell line devoid of glia. Results from this study demonstrated that minocycline, but not tetracycline, is protective in in vitro models of excitotoxicity-induced retinal cell apoptosis. Moreover, the protective effects provided by minocycline in retinal cells seemed independent of actions on N-methyl-D-aspartate receptors (NMDARs) and glutamate receptor-mediated Ca2+ influx. Doses of the NMDAR antagonist MK-801 ( dizocilpine) and minocycline that alone provided no significant neuroprotection resulted in enhanced retinal cell survival when applied concurrently, suggestive of distinct signaling pathways, and minocycline was without effect on glutamate-induced Ca2+ influx, as assessed by calcium imaging. Minocycline was also neuroprotective after trophic factor withdrawal, producing a decrease in apoptosis and caspase-3 activation in both retinal cells and the PC-12 neuronal-like cell line. These results support a role for minocycline as a retinal neuroprotectant and demonstrate that the antiapoptotic actions of minocycline in retinal cells do not arise from the blockage of NMDARs or glutamate receptor-mediated Ca2+ influx but do involve inhibition of caspase-3 activation. In addition, the survival-promoting actions of minocycline may arise via actions on both neuronal and non-neuronal cell targets.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available