4.5 Article

Competing fragmentation processes in tandem mass spectra of heparin-like Glycosaminoglycans

Journal

JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
Volume 15, Issue 11, Pages 1534-1544

Publisher

SPRINGER
DOI: 10.1016/j.jasms.2004.06.019

Keywords

-

Funding

  1. NCRR NIH HHS [P41 RR1088] Funding Source: Medline
  2. NHLBI NIH HHS [R01 HL74197] Funding Source: Medline

Ask authors/readers for more resources

Heparin-like glycosaminoglycans (HLGAGs) are highly sulfated, linear carbohydrates attached to proteoglycan core proteins and expressed on cell surfaces and in basement membranes. These carbohydrates bind several families of growth factors and growth factor receptors and act as coreceptors for these molecules. Tandem mass spectrometry has the potential to increase our understanding of the biological significance of HLGAG expression by providing a facile means for sequencing these molecules without the need for time-consuming total purification. The challenge for tandem mass spectrometric analysis of HLGAGs is to produce abundant ions derived via glycosidic bond cleavages while minimizing the abundances of ions produced from elimination of the fragile sulfate groups. This work describes the competing fragmentation pathways that result from dissociation of high negative charge state ions generated from HLGAGs. Glycosidic bond cleavage ion formation competes with losses of equivalents of H2SO4, resulting in complex ion patterns. For the most highly sulfated structure examined, an octasulfated tetramer, an unusual loss of charge from the precursor ion was observed, accompanied by low abundance ions originating from subsequent backbone cleavages. These results demonstrate that fragmentation processes competing with glycosidic bond cleavages are more favored for highly sulfated HLGAG ions. In conclusion, reduction of charge- charge repulsions, such as is achieved by pairing the HLGAG ions with metal cations, is necessary in order to minimize the abundances of ions derived via fragmentation processes that compete with glycosidic bond cleavages. (J Am Soc Mass Spectrom 2004,15,1534-1544) (C) 2004 American Society for Mass Spectrometry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available