4.6 Article

Analytic band Monte Carlo model for electron transport in Si including acoustic and optical phonon dispersion

Journal

JOURNAL OF APPLIED PHYSICS
Volume 96, Issue 9, Pages 4998-5005

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1788838

Keywords

-

Ask authors/readers for more resources

We describe the implementation of a Monte Carlo model for electron transport in silicon. The model uses analytic, nonparabolic electron energy bands, which are computationally efficient and sufficiently accurate for future low-voltage (<1 V) nanoscale device applications. The electron-lattice scattering is incorporated using an isotropic, analytic phonon-dispersion model, which distinguishes between the optical/acoustic and the longitudinal/transverse phonon branches. We show that this approach avoids introducing unphysical thresholds in the electron distribution function, and that it has further applications in computing detailed phonon generation spectra from Joule heating. A set of deformation potentials for electron-phonon scattering is introduced and shown to yield accurate transport simulations in bulk silicon across a wide range of electric fields and temperatures. The shear deformation potential is empirically determined at Xi(u)=6.8 eV, and consequently, the isotropically averaged scattering potentials with longitudinal and transverse acoustic phonons are D-LA=6.39 eV and D-TA=3.01 eV, respectively, in reasonable agreement with previous studies. The room-temperature electron mobility in strained silicon is also computed and shown to be in better agreement with the most recent phonon-limited data available. As a result, we find that electron coupling with g-type phonons is about 40% lower, and the coupling with f-type phonons is almost twice as strong as previously reported. (C) 2004 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available