4.5 Article

Kinematics of aquatic and terrestrial escape responses in mudskippers

Journal

JOURNAL OF EXPERIMENTAL BIOLOGY
Volume 207, Issue 23, Pages 4037-4044

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jeb.01237

Keywords

escape response; mudskipper; Periophthalmus argentilineatus; terrestrial environment; aquatic environment; intervertebral bending

Categories

Ask authors/readers for more resources

Escape responses in fishes are rapid behaviors that are critical for survival. The barred mudskipper (Periophthalmus argentilineatus) is an amphibious fish that must avoid predators in two environments. We compared mudskipper terrestrial and aquatic escapes to address two questions. First, how does an amphibious fish perform an escape response in a terrestrial environment? Second, how similar is a terrestrial escape response to an aquatic escape response? Because a mudskipper on land does not have to contend with the high viscosity of water, we predicted that, if the same behavior is employed across environments, terrestrial escape responses should have 'better' performance (higher velocity and more rapid completion of movements) when compared with aquatic escape responses. By contrast, we predicted that intervertebral bending would be similar across environments because previous studies of escape response behaviors in fishes have proposed that vertebral morphology constrains intervertebral bending. Highspeed digital imaging was used to record mudskipper escapes in water and on land, and the resulting images were used to calculate intervertebral bending during the preparatory phase, peak velocity and acceleration of the center of mass during the propulsive phase, and relative timing of movements. Although similar maximum velocities are achieved across environments, terrestrial responses are distinct from aquatic responses. During terrestrial escapes, mudskippers produce greater axial bending in the preparatory phase, but only in the posterior region of the body and over a much longer time period. Mudskippers also occasionally produced the 'wrong' behavior for a given environment. Thus, it appears that the same locomotor morphology is recruited differently by the central nervous system to produce a distinct behavior appropriate for each environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available