4.6 Article

Decavanadate as a biochemical tool in the elucidation of muscle contraction regulation

Journal

JOURNAL OF INORGANIC BIOCHEMISTRY
Volume 98, Issue 11, Pages 1902-1910

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jinorgbio.2004.08.013

Keywords

decavanadate; myosin; photocleavage; NMR

Ask authors/readers for more resources

Recently reported decameric vanadate (V-10) high affinity binding site in myosin S1, suggests that it can be used as a tool in the muscle contraction regulation. In the present article, it is shown that V-10 species induces myosin S1 cleavage, upon irradiation, at the 23 and 74 kDa sites, the latter being prevented by actin and the former blocked by the presence of ATP. Identical cleavage patterns were found for meta- and decavanadate solutions, indicating that V-10 and tetrameric vanadate (V-4) have the same binding sites in myosin S1 Concentrations as low as 50 muM decavanadate (5 muM V-10 species) induces 30%, of protein cleavage, whereas 500 muM metavanadate is needed to attain the same extent of cleavage. After irradiation, V-10 species is rapidly decomposed, upon protein addition, forming vanadyl (V4+) species during the process. It was also observed by NMR line broadening experiments that, V-10 competes with V-4 for the myosin S1 binding sites, having a higher affinity. In addition, V-4 interaction with myosin S1 is highly affected by the products release during ATP hydrolysis in the presence or absence of actin, whereas V-10 appears to be affected at a much lower extent. From these results it is proposed that the binding of vanadate oligomers to myosin S1 at the phosphate loop (23 kDa site) is probably the cause of the actin stimulated myosin ATPase inhibition by the prevention of ATP/ADP exchange, and that this interaction is favoured for higher vanadate anions, Such as V-10. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available