4.7 Article

Epidermal growth factor receptor inhibition attenuates early kidney enlargement in experimental diabetes

Journal

KIDNEY INTERNATIONAL
Volume 66, Issue 5, Pages 1805-1814

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1111/j.1523-1755.2004.00955.x

Keywords

diabetic nephropathy; epidermal growth factor; receptor tyrosine kinase; proliferation; apoptosis

Ask authors/readers for more resources

Background. Renal enlargement is an early feature of both human and experimental diabetes. Although the precise mechanisms underlying its development are incompletely understood, locally active growth factors have been suggested to have a key role. Having previously documented increased expression of the proproliferative and antiapoptotic growth factor, epidermal growth factor (EGF), in early diabetes-related kidney growth, the present study sought to evaluate its pathogenetic role by blocking its action with a specific inhibitor. Methods. Sprague-Dawley rats were randomized to receive streptozotocin (diabetic) or buffer (control) and then further randomized to receive either vehicle or the inhibitor of the EGF receptor tyrosine kinase, PKI166 (100 mg/kg/day) for 2 days and 3 weeks following streptozotocin administration. Results. Experimental diabetes was associated with an increase in kidney weight and tubular epithelial cell proliferation as identified by increased expression of proliferating cell nuclear antigen (PCNA) and 5-bromo-2'-deoxyuridine (BrdU) incorporation. PKI 166 resulted in a 30% reduction in kidney weight in diabetic rats (P < 0.01) and reduced tubular epithelial cell proliferation (P < 0.01). In addition, EGF receptor inhibition also led to a 40% increase in tubular epithelial cell apoptosis at 3 weeks (P < 0.01). Diabetes-associated glomerular enlargement was similarly attenuated by PKI 166, although glomerular hyperfiltration was unaffected. Conclusion. These findings suggest that the EGF-EGF receptor (EGFR) axis has a significant role in the development of early diabetes-related kidney growth. The impact of EGFR inhibition on the later development of renal dysfunction, however, remains to be determined.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available