4.5 Article

Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex

Journal

EUROPEAN JOURNAL OF NEUROSCIENCE
Volume 20, Issue 10, Pages 2664-2670

Publisher

BLACKWELL PUBLISHING LTD
DOI: 10.1111/j.1460-9568.2004.03735.x

Keywords

autofluorescence; BOLD fMRI; laser speckle

Categories

Ask authors/readers for more resources

Oxidative metabolism and cerebral blood flow (CBF) are two of the most important measures in neuroimaging. However, results from concurrent imaging of the two with high spatial and temporal resolution have never been published. We used flavoprotein autofluorescence (AF) and laser speckle imaging (LSI) in the anaesthetized rat to map oxidative metabolism and CBF in response to single vibrissa stimulation. Autofluorescence responses reflecting oxidative metabolism demonstrated a fast increase with a delay of 0.1 s. The sign-reversed speckle contrast reflecting CBF started to rise with a delay of 0.6 s and reached its maximum 1.4 s after the stimulation offset. The fractional signal changes were 2.0% in AF and 9.7% in LSI. Pixelwise modelling revealed that CBF maps spread over an area up to 2.5-times larger than metabolic maps. The results provide evidence that the increase in cerebral oxidative metabolism in response to sensory stimulation is considerably faster and more localized than the CBF response. This suggests that future developments in functional imaging concentrating on the metabolic response promise an increased spatial resolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available