4.6 Article

Quantum entanglement and the self-trapping transition in polaronic systems

Journal

PHYSICAL REVIEW B
Volume 70, Issue 19, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.70.195113

Keywords

-

Ask authors/readers for more resources

We revisit from a quantum-information perspective a classic problem of polaron theory in one dimension. In the context of the Holstein model we show that a simple analysis of quantum entanglement between excitonic and phononic degrees of freedom allows one to effectively characterize both the small and large polaron regimes as well as the crossover in between. The small (large) polaron regime corresponds to a high (low) degree of bipartite quantum entanglement between the exciton and the phonon cloud that clothes the exciton. Moreover, the self-trapping transition is clearly displayed by a sharp drop of exciton-phonon entanglement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available