4.4 Article

Characterizing fluorescence recovery curves for nuclear proteins undergoing binding events

Journal

BULLETIN OF MATHEMATICAL BIOLOGY
Volume 66, Issue 6, Pages 1515-1545

Publisher

SPRINGER
DOI: 10.1016/j.bulm.2004.02.005

Keywords

-

Ask authors/readers for more resources

Fluorescence recovery after photobleaching (FRAP) is an experimental technique used to measure the mobility of proteins within the cell nucleus. After proteins of interest are fluorescently tagged for their visualization and monitoring, a small region of the nucleus is photobleached. The experimental FRAP data are obtained by recording the recovery of the fluorescence in this region over time. In this paper, we characterize the fluorescence recovery curves for diffusing nuclear proteins undergoing binding events with an approximate spatially homogeneous structure. We analyze two mathematical models for interpreting the experimental FRAP data, namely a reaction-diffusion model and a compartmental model. Perturbation analysis leads to a clear explanation of two important limiting dynamical types of behavior exhibited by experimental recovery curves, namely, (1) a reduced diffusive recovery, and (2) a biphasic recovery characterized by a fast phase and a slow phase. We show how the two models, describing the same type of dynamics using different approaches, relate and share common ground. The results can be used to interpret experimental FRAP data in terms of protein dynamics and to simplify the task of parameter estimation. Application of the results is demonstrated for nuclear actin and type HI histone. (C) 2004 Society for Mathematical Biology. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available