4.7 Review

Wiskott-Aldrich syndrome protein and the cytoskeletal dynamics of dendritic cells

Journal

JOURNAL OF PATHOLOGY
Volume 204, Issue 4, Pages 460-469

Publisher

WILEY
DOI: 10.1002/path.1651

Keywords

WASP; dendritic cells; macrophages; actin cytoskeleton; cell migration

Ask authors/readers for more resources

The regulated migration and spatial localization of dendritic cells in response to environmental signals are critical events during the initiation of physiological immune responses and maintenance of tolerance. Cells deficient in the Wiskott-Aldrich syndrome protein (WASP) have been used to demonstrate the importance of the dynamic remodelling of the actin-based cytoskeleton during the selective adhesion and migration of these cells. Unlike most cell types, macrophages, dendritic cells, and osteoclasts utilize a specialized adhesive array termed the podosome in order to migrate. Podosomes are composed of many of the same structural and regulatory proteins as seen in the more commonly found focal adhesion, but are unique in their requirement for WASP. Without WASP, podosomes cannot form and the affected cells are obliged to use focal adhesions for their migratory activities. Once activated by a series of upstream regulatory proteins, WASP acts as a scaffold for the binding of the potent actin nucleating protein complex known as Arp2/3. This article reviews the available evidence that suggests that failures in the regulation of the actin cytoskeleton may contribute significantly to the immunopathology of the Wiskott-Aldrich syndrome. Copyright (C) 2004 Pathological Society of Great Britain and Ireland. Published by John Wiley Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available