4.8 Article

Rupture force between the third strand and the double strand within a triplex DNA

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 126, Issue 43, Pages 13992-13997

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja046341k

Keywords

-

Ask authors/readers for more resources

The rupture force to separate the third strand and the duplex within a triplex DNA was measured by means of atomic force spectroscopy. The tip and the sample surfaces were functionalized by oligodeoxyribonucleoticles 5'-TTCTTCTTTCTTTTCCTTTTCTTTCTTCTTACTTCTCTCTCTC TCTCTCT-SH-3'. The sample surface was hybridized with 5'-AAGAAGAAAGAAAAGGAAAAGAAAGAAGAA-3' to form a double strand DNA on the surface prior to the force measurements. These sequences form triple helices with 30 base pairs under a pH of 5.8 and in the presence of 2.0 mM spermine. Signals of rupture of single and multiple triplex DNA were observed in the force distance curves. Rupture force histograms revealed a force of 42.6 +/- 1.9 pN from 24 independent measurements at a tip velocity of 400 nm/s to separate the third strand from duplex DNA. The velocity dependence of the rupture force quantum indicates a thermal dissociation process similar to that of rupturing a ds-DNA. The number of rupture events was controlled by adding oligonucleotides 5'-AAGAAGAAAGAAAAGGAAAAGAAAGAAGAA-3' either to reduce or to initiate triplex formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available