4.5 Article

Magnetic field dependence of quantized and localized spin wave modes in thin rectangular magnetic dots

Journal

JOURNAL OF PHYSICS-CONDENSED MATTER
Volume 16, Issue 43, Pages 7709-7721

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/16/43/011

Keywords

-

Ask authors/readers for more resources

The magnetic field dependences of the frequencies of standing spin-wave modes in a tangentially magnetized array of thin rectangular permalloy dots (800 x 550 nm) were measured experimentally by a Brillouin light scattering technique and calculated theoretically using an approximate size-dependent quantization of the spin-wavevector components in the dipole-exchange dispersion equation for spin waves propagating in a continuous magnetic film. It was found that the inhomogeneous internal bias magnetic field of the dot has a strong influence on the profiles of the lowest spin-wave standing modes. In addition, the dynamic magnetization distributions found for both longitudinally and transversely magnetized long magnetic stripes gives a good approximation for mode distributions in a rectangular dot magnetized along one of its in-plane sides. An approximate analytic theory of exchange-dominated spin-wave modes, strongly localized along the dot edge that is perpendicular to the bias magnetic field, is developed. A good quantitative agreement with the results of the BLS experiment is found.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available