4.6 Article

Microfabricated platform for studying stem cell fates

Journal

BIOTECHNOLOGY AND BIOENGINEERING
Volume 88, Issue 3, Pages 399-415

Publisher

WILEY
DOI: 10.1002/bit.20254

Keywords

stem cells; clonal assay; BioMEMS; microfabrication; high-throughput

Ask authors/readers for more resources

Platforms that allow parallel, quantitative analysis of single cells will be integral to realizing the potential of postgenomic biology. In stem cell biology, the study of clonal stem cells in multiwell formats is currently both inefficient and time-consuming. Thus, to investigate low-frequency events of interest, large sample sizes must be interrogated. We report a simple, versatile, and efficient micropatterned arraying system conducive to the culture and dynamic monitoring of stem cell proliferation. This platform enables: 1) parallel, automated, long-term (similar todays to weeks), live-cell microscopy of single cells in culture; 2) tracking of individual cell fates over time (proliferation, apoptosis); and 3) correlation of differentiated progeny with founder clones. To achieve these goals, we used microfabrication techniques to create an array of similar to 10,000 microwells on a glass coverslip. The dimensions of the wells are tunable, ranging from 20 to > 500 mum in diameter and 10 - 500 mum in height. The microarray can be coated with adhesive proteins and is integrated into a culture chamber that permits rapid (similar to min), addressable monitoring of each well using a standard programmable microscope stage. All cells share the same media (including paracrine survival signals), as opposed to cells in multiwell formats. The incorporation of a coverslip as a substrate also renders the platform compatible with conventional, high-magnification light and fluorescent microscopy. We validated this approach by analyzing the proliferation dynamics of a heterogeneous adult rat neural stem cell population. Using this platform, one can further interrogate the response of distinct stem cell subpopulations to microenviron mental cues (mitogens, cell-cell interactions, and cell-extracellular matrix interactions) that govern their behavior. In the future, the platform may also be adapted for the study of other cell types by tailoring the surface coatings, microwell dimensions, and culture environment, thereby enabling parallel investigation of many distinct cellular responses. (C) 2004 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available