4.6 Article

Role of CL-100, a dual specificity phosphatase, in thrombin-induced endothelial cell activation

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 45, Pages 46678-46685

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M406441200

Keywords

-

Funding

  1. NHLBI NIH HHS [HL29582] Funding Source: Medline

Ask authors/readers for more resources

Using a cDNA microarray screening approach, we have identified seven novel thrombin-responsive genes in human umbilical vein endothelial cells that were verifiable by Northern blot analysis. Among them CL-100, a dual-specificity phosphatase also known as MAP kinase phosphatase-1 (MKP-1), showed greatest induction by thrombin. Steady-state levels of CL-100 mRNA induction by thrombin peaked at 1 h and declined rapidly (t(1/2) similar to45 min). Induction by thrombin was protease-activated receptor-1-mediated, protein synthesis-independent, and transcriptionally regulated. Metabolic labeling followed by immunoprecipitation verified that the thrombin-induced CL-100 mRNA was translated into protein. We found that both Src-kinase and p42/p44 ERK activity are critical for thrombin-induced CL-100 expression, whereas phosphatidylinositol 3-kinase and protein kinase C activity were not required. Antisense-mediated inhibition of CL-100 was shown to prolong thrombin-induced ERK activity in endothelial cells, concomitant with an inhibition in thrombin-induced PDGF-A (platelet-derived growth factor A) and PDGF-B gene expression and an up-regulation in thrombin-induced VCAM-1 and E-selectin gene expression. Inhibition of ERK activation by PD98059 in endothelial cells was shown to potentiate thrombin-induced expression of PDGF-B (similar to3-fold) while inhibiting thrombin-induced VCAM-1 and E-selectin gene expression by 60 and 70%, respectively. These results suggested that induced expression of the CL-100 phosphatase and its subsequent regulation of ERK activity play a key regulatory role in the thrombin signaling pathway and in the transcriptional regulation of pathologically important endothelial cell activation genes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available