4.6 Article

The auxiliary protein HypX provides oxygen tolerance to the soluble [NiFe]-hydrogenase of Ralstonia eutropha H16 by way of a cyanide ligand to nickel

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 45, Pages 46686-46691

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M406942200

Keywords

-

Ask authors/readers for more resources

The hypX gene of the facultative lithoautotrophic bacterium Ralstonia eutropha is part of a cassette of accessory genes (the hyp cluster) required for the proper assembly of the active site of the [NiFe]-hydrogenases in the bacterium. A deletion of the hypX gene led to a severe growth retardation under lithoautotrophic conditions with 5 or 15% oxygen, when the growth was dependent on the activity of the soluble NAD(+)-reducing hydrogenase. The enzymatic and infrared spectral properties of the soluble hydrogenase purified from a HypX-negative strain were compared with those from an enzyme purified from a HypX-positive strain. In activity assays under anaerobic conditions both enzyme preparations behaved the same. Under aerobic conditions, however, the mutant enzyme became irreversibly inactivated during H-2 oxidation with NAD(+) or benzyl viologen as the electron acceptor. Infrared spectra and chemical determination of cyanide showed that one of the four cyanide groups in the wild-type enzyme was missing in the mutant enzyme. The data are consistent with the proposal that the HypX protein is specifically involved in the biosynthetic pathway that delivers the nickel-bound cyanide. The data support the proposal that this cyanide is crucial for the enzyme to function under aerobic conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available