4.8 Article

MEC-2 is recruited to the putative mechanosensory complex in C-elegans touch receptor neurons through its stomatin-like domain

Journal

CURRENT BIOLOGY
Volume 14, Issue 21, Pages 1888-1896

Publisher

CELL PRESS
DOI: 10.1016/j.cub.2004.10.030

Keywords

-

Funding

  1. NIGMS NIH HHS [GM30997, R37 GM030997] Funding Source: Medline

Ask authors/readers for more resources

Background: The response to gentle body touch in C. elegans requires a degenerin channel complex containing four proteins (MEC-2, MEC-4, MEC-6, and MEC-10). The central portion of the integral membrane protein MEC-2 contains a stomatin-like region that is highly conserved from bacteria to mammals. The molecular function of this domain in MEC-2, however, is unknown. Results: Here, we show that MEC-2 colocalizes with the degenerin MEC-4 in regular puncta along touch receptor neuron processes. This punctate localization requires the other channel complex proteins. The stomatin-like region of MEC-2 interacts with the intracellular cytoplasmic portion of MEC-4. Missense mutations in this region that destroy the interaction also disrupt the punctate localization and degenerin-regulating function of MEC-2. Missense mutations outside this region apparently have no effect on the punctate localization but significantly reduce the regulatory effect of MEC-2 on the MEC-4 degenerin channel. A second stomatin-like protein, UNC-24, colocalizes with MEC-2 in vivo and coimmunoprecipitates with MEC-2 and MEC-4 in Xenopus oocytes; unc-24 enhances the touch insensitivity of temperature-sensitive alleles of rnec-4 and mec-6. Conclusion: Two stomatin homologs, MEC-2 and UNC-24, interact with the MEC-4 degenerin through their stomatin-like regions, which act as protein binding domains. At least in the case of MEC-2, this binding allows its nonstomatin domains to regulate channel activity. Stomatin-like regions in other proteins may serve a similar protein binding function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available