4.8 Article

Concomitant length and diameter separation of single-walled carbon nanotubes

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 126, Issue 44, Pages 14567-14573

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja046450z

Keywords

-

Ask authors/readers for more resources

Gel electrophoresis and column chromatography conducted on individually dispersed, ultrasonicated single-walled carbon nanotubes yield simultaneous separation by tube length and diameter. Electroelution after electrophoresis is shown to produce highly resolved fractions of nanotubes with average lengths between 92 and 435 nm. Separation by diameter is concomitant with length fractionation, and nanotubes that have been cut shortest also possess the greatest relative enrichments of large-diameter species. Longer sonication time causes increased electrophoretic. mobility in the gels; thus, ultrasonic processing determines the degree of both length and diameter separation of the nanotubes. The relative quantum yield decreases nonlinearly as the nanotube length becomes shorter. These techniques constitute a preparative, scalable method for separating nanotubes by two important attributes required for electronic and sensor applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available