4.8 Article

Vortex arrays in a rotating superfluid Fermi gas

Journal

PHYSICAL REVIEW LETTERS
Volume 93, Issue 20, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.93.200406

Keywords

-

Ask authors/readers for more resources

The behavior of a dilute two-component neutral superfluid Fermi gas subjected to rotation is investigated within the context of a weak-coupling BCS theory. The microscopic properties at finite temperature are obtained by iterating the Bogoliubov-de Gennes equations to self-consistency. In the model, alkali atoms are strongly confined in quasi-two-dimensional traps produced by a deep one-dimensional optical lattice. The lattice depth significantly enhances the critical transition temperature and the critical rotation frequency at which the superfluidity ceases. As the rotation frequency increases, the triangular vortex arrays become increasingly irregular, indicating a quantum melting transition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available