4.5 Article

GSK-3β inhibition/β-catenin stabilization in ventral midbrain precursors increases differentiation into dopamine neurons

Journal

JOURNAL OF CELL SCIENCE
Volume 117, Issue 24, Pages 5731-5737

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.01505

Keywords

GSK-3 beta; beta-catenin; dopamine; neuron; Wnt

Categories

Ask authors/readers for more resources

Wnts are important regulators of dopamine (DA) neuron differentiation in the developing ventral mesencephalon and could thus serve as potential tools in the treatment of Parkinson's disease. In this study, we investigate whether established intracellular Wnt signalling components could modulate the development of DA neurons. Two chemical inhibitors of glycogen synthase kinase (GSK)-3beta, indirubin-3-monoxime and kenpaullone, were found to increase neuronal differentiation in ventral mesencephalon precursor cultures. In addition, the GSK-3beta-specific inhibitor kenpaullone increased the size of the DA neuron population through conversion of precursors expressing the orphan nuclear receptor-related factor 1 into tyrosine hydroxylase positive neurons, thereby mimicking an effect of Wnts. We show that GSK-3beta inhibitors stabilized beta-catenin and that overexpression of beta-catenin in ventral mesencephalic precursors resulted in increased DA differentiation. The three- to fivefold increase in DA differentiation of precursor cells by GSK-3beta inhibitors suggests that such compounds could be used to improve stem/precursor cell therapy approaches in Parkinson's disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available