4.6 Article

Dispersion-guided resonances in two-dimensional photonic-crystal-embedded microcavities

Journal

OPTICS EXPRESS
Volume 12, Issue 23, Pages 5711-5722

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OPEX.12.005711

Keywords

-

Categories

Ask authors/readers for more resources

We analyze dispersion-based guiding of resonances in two-dimensional (2-D) photonic-crystal-embedded microcavities (PCEMs) that comprise a finite-size square lattice of submicrometer air holes embedded in a high-index contrast square microcavity. Our 2-D finite-difference time-domain simulations of waveguide side-coupled PCEMs suggest high-Q quasi-periodic multimodes within the PC first band. The Q can increase by orders of magnitude as the mode frequency approaches the band-edge frequency or as the lattice dimension increases. By mapping the Fourier transform of the mode-field distributions onto the PC dispersion surface, we show that the modes k-vectors and group velocities are pointing near the GammaM direction. (C) 2004 Optical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available