4.8 Article

Axon branch removal at developing synapses by axosome shedding

Journal

NEURON
Volume 44, Issue 4, Pages 651-661

Publisher

CELL PRESS
DOI: 10.1016/j.neuron.2004.10.026

Keywords

-

Categories

Ask authors/readers for more resources

In many parts of the developing nervous system, the number of axonal inputs to each postsynaptic cell is dramatically reduced. This synapse elimination has been extensively studied at the neuromuscular junction, but how axons are lost is unknown. Here, we combine time-lapse imaging of fluorescently labeled axons and serial electron microscopy to show that axons at neuromuscular junctions are removed by an unusual cellular mechanism. As axons disappear, they shed numerous membrane bound remnants. These axosomes contain a high density of synaptic organelles and are formed by engulfment of axon tips by Schwann cells. After this engulfment, the axosome's contents mix with the cytoplasm of the glial cell. Axosome shedding might underlie other forms of axon loss and may provide a pathway for interactions between axons and glia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available