4.7 Article

One-state downhill versus conventional protein folding

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 344, Issue 2, Pages 295-301

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2004.09.069

Keywords

peripheral subunit binding domain; denaturation; molten globule

Ask authors/readers for more resources

Classical protein folding invokes a cooperative transition between distinct thermodynamic states that are individually populated at equilibrium and separated by an energy barrier. It has been proposed, however, that the small protein, BBL, undergoes one-step downhill folding whereby it folds non-cooperatively to its native state without encountering an appreciable energy barrier. Only a single conformational ensemble is populated under given conditions, and so the denatured state ensemble progressively changes into the native structure. A wide dispersion of thermal denaturation midpoints that was observed for an extrinsically labelled fragment of BBL is proposed to be evidence for its one-state, downhill folding, a phenomenon that is also suggested to be functionally important for BBL and its homologues. We found, however, that thermal denaturation of unlabelled wild-type BBL was highly cooperative, with very similar transition midpoints for the melting of secondary and tertiary interactions, as well as for individual residues when monitored by NMR. Similar results were also observed for two other homologues, E3BD and POB. Further, the extrinsic fluorophores perturbed the unfolding energetics of labelled BBL, and complicated its equilibrium behaviour. One-step downhill folding may well occur for some proteins that do not have distinct folded states but not for BBL and its well-folded homologues. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available