4.6 Article

Bacterial P450-catalyzed polyketide hydroxylation on a microfluidic platform

Journal

BIOTECHNOLOGY AND BIOENGINEERING
Volume 88, Issue 4, Pages 528-535

Publisher

WILEY
DOI: 10.1002/bit.20285

Keywords

P450; microfluidics; hydroxylation; polyketide

Ask authors/readers for more resources

The incorporation of a multicomponent, cofactor-dependant P450 into a microfluidic biochip is demonstrated. The PikC hydroxylase Streptomyces venezuelae was incorporated into a PDMS-based microfluidic channel. The enzyme was immobilized to Ni-NTA agarose beads via in situ attachment following the addition of the beads to the microchannel. The enzyme loading was similar to6 mug per mg of beads resulting in a microchannel loading of 10.7 mg/mL. This high enzyme loading enabled the rapid hydroxylation of the macrolide YC-17 to methymycin and neomethymycin in about equal amounts with a conversion of >90% at a flow rate of 70 nL/min. This high reactivity allowed rapid hydroxylation reactions to be performed with short residence times, which is critical for complex enzymes with limited inherent stability. (C) 2004 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available