4.4 Article

Femtosecond laser interaction with silicon under water confinement

Journal

THIN SOLID FILMS
Volume 467, Issue 1-2, Pages 334-341

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.tsf.2004.04.043

Keywords

laser ablation; silicon; solid electrolyte interface; water

Ask authors/readers for more resources

Femtosecond laser interaction with silicon was investigated in water and in air, with 130-fs laser pulses at 800 nm wavelength. Under water confinement, higher modification thresholds, lower ablation depths and similar incubation factors were found in comparison to the dry experiment. Morphological features of the laser-induced cavities also differed. In contrast to air experiments, debris redeposition was negligible, while the ablated material remained suspended in the water layer phase. Underwater cavities obtained at high fluences and high number of pulses per spot showed anomalous profiles, consistent with a strong spatial deformation of the laser beam coupled into the target. Ripples formed at the edges of the modified area showed varying spacings: similar to 100 and similar to 700 nin for water and air experiments, respectively. Differences to the air experiment were related to a complex combination of fluence-dependent non-linear effects occurring in the water layer and to pulse-number-dependent shielding effects induced by cavitation bubbles and suspended ablated material. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available