4.6 Article

A covalent oxidoreductase intermediate in propeptide-dependent von Willebrand factor multimerization

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 48, Pages 49982-49988

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M408727200

Keywords

-

Funding

  1. NHLBI NIH HHS [HL72917] Funding Source: Medline

Ask authors/readers for more resources

The assembly of von Willebrand factor multimers in the Golgi apparatus requires D1D2 domains of the von Willebrand factor propeptide, which may act as an oxidoreductase to promote disulfide bond formation or rearrangement between two D3 domains in the mature subunit. This mechanism predicts that the propeptide should form a transient intrachain disulfide bond with the D3 domain before multimerization. Such an intermediate was detected using truncated subunits that simplify the analysis of the multimerization process. When only the D1D2D'D3 region of von Willebrand factor was expressed in baby hamster kidney cells, the propeptide and D'D3 formed an intrachain disulfide-linked species in the endoplasmic reticulum that could be identified by two-dimensional gel electrophoresis after cleavage with thrombin or furin. This intermediate rearranged in the Golgi to form free propeptide and D'D3 dimers that were secreted. A similar intracellular disulfide-linked species was identified in cells expressing the propeptide and D'D3 as separate proteins and in cells expressing full-length von Willebrand factor. These results support a model in which the propeptide acts as an oxidoreductase to promote von Willebrand factor multimerization in the Golgi apparatus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available