4.6 Article

Caspase-2 permeabilizes the outer mitochondrial membrane and disrupts the binding of cytochrome c to anionic phospholipids

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 48, Pages 49575-49578

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.C400374200

Keywords

-

Funding

  1. NIEHS NIH HHS [K22 ES11647] Funding Source: Medline

Ask authors/readers for more resources

Caspases are cysteine proteases that play a central role in the execution of apoptosis. Recent evidence indicates that caspase-2 is activated early in response to genotoxic stress and can function as an upstream modulator of the mitochondrial apoptotic pathway. In particular, we have shown previously that fully processed caspase-2 can permeabilize the outer mitochondrial membrane and cause cytochrome c and Smac/DIABLO release from these organelles. Using permeabilized cells, isolated mitochondria, and protein-free liposomes, we now report that this effect is direct and depends neither on the presence or cleavage of other proteins nor on a specific phospholipid composition of the liposomal membrane. Interestingly, caspase-2 was also shown to disrupt the interaction of cytochrome c with anionic phospholipids, notably cardiolipin, and thereby enhance the release of the hemoprotein caused by treatment of mitochondria with digitonin or the proapoptotic protein Bax. Combined, our data suggest that caspase-2 possesses an unparalleled ability to engage the mitochondrial apoptotic pathway by permeabilizing the outer mitochondrial membrane and/or by breaching the association of cytochrome c with the inner mitochondrial membrane.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available