4.4 Article

Microextraction in packed syringe (MEPS) for liquid and gas chromatographic applications. Part II - Determination of ropivacaine and its metabolites in human plasma samples using MEPS with liquid chromatography/tandem mass spectrometry

Journal

JOURNAL OF MASS SPECTROMETRY
Volume 39, Issue 12, Pages 1488-1493

Publisher

JOHN WILEY & SONS LTD
DOI: 10.1002/jms.731

Keywords

on-line sample preparation; microextraction in packed syringe; liquid chromatography/tandem mass spectrometry; ropivacaine; ropivacaine metabolites; plasma; validation

Ask authors/readers for more resources

A new technique for sample preparation on-line with liquid chromatographic/tandem mass spectrometric (LC/MS/MS) assay was developed. Microextraction in a packed syringe (MEPS) is a new miniaturized, solid-phase extraction technique that can be connected on-line to gas or liquid chromatography without any modifications. In MEPS similar to1 mg of the solid packing material is inserted into a syringe (100-250 mul) as a plug. Sample preparation takes place on the packed bed. The bed can be coated to provide selective and suitable sampling conditions. The new method is very promising, very easy to use, fully automated, of low cost and rapid in comparison with previously used methods. This paper presents the development and validation of a method for MEPS on-line with LC/MS/MS. Ropivacaine and its metabolites (PPX and 3-OH-ropivacaine) in human plasma samples were used as model substances. The method was validated and the calibration curves were evaluated by means of quadratic regression and weighted by the inverse of the concentration, 1/x, for the calibration range 2-2000 nM. The applied polymer could be used more than 100 times before the syringe was discarded. The extraction recovery was between 40 and 60%. The results showed high correlation coefficients (R-2 > 0.999) for all analytes in the calibration range studied. The accuracy, expressed as a percentage variation from the nominal concentration values, ranged from 0 to 6%. The precision, expressed as the relative standard deviation, at three different concentrations (quality control samples) was consistently about 2-10%. The limit of quantification was 2 nM. Copyright (C) 2004 John Wiley Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available