4.7 Article

Bystander activity of Ad-mda7: Human MDA-7 protein kills melanoma cells via an IL-20 receptor-dependent but STAT3-independent mechanism

Journal

MOLECULAR THERAPY
Volume 10, Issue 6, Pages 1085-1095

Publisher

CELL PRESS
DOI: 10.1016/j.ymthe.2004.08.020

Keywords

mda-7; IL-24; apoptosis; bystander; endoplasmic reticulum; stress; cytokine; secretion; adenovirus; cancer gene therapy; IL-10; IL-19; IL-20; IL-22; receptor; PKR

Funding

  1. NCI NIH HHS [P01 CA06294, CA89778, P50 CA093459, CA88421, CA097598, 1R01-CA102716-01A1] Funding Source: Medline

Ask authors/readers for more resources

The melanoma differentiation-associated gene-7 (mda-7/IL24) is a unique member of the IL-10 family of cytokines, with ubiquitous tumor cell proapoptotic activity. Transduction of tumor or normal cells with the mda-7 gene results in secretion of glycosylated MDA-7 protein. Recent data indicate that secreted MDA-7 protein functions as a pro-Th1 cytokine and as a potent antiangiogenic molecule. MDA-7 protein binds two distinct type 11 cytokine heterodimeric receptor complexes, IL-20R1/IL-20R2 (type 1 IL-20R2) and IL-22R1/IL-20R2 (type 2 IL-20R). In this study we analyzed the activity of glycosylated secreted MDA-7 against human melanoma cells. MDA-7 protein induces phosphorylation and nuclear translocation of STAT3 in melanoma cells via both type 1 and type 2 IL-20R. MDA-7 induces dose-dependent cell death in melanoma tumor cells. MDA-7 receptor engagement results in up-regulation of BAX and subsequent apoptosis induction; this effect is mediated by STAT3-independent signaling. Additional IL-10 family members (IL-10, -19, -20, and -22) also activate STAT3; however, these ligands do not activate death pathways in melanoma. In normal cells, MDA-7 can bind to its cognate receptors and induce phosphorylation of STAT3, without cytotoxic sequelae. This study defines a tumor-selective cytotoxic bystander role for secreted MDA-7 protein and identifies a novel receptor-mediated, STAT3-independent, and PKR-independent death pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available