4.4 Article

Anoxia-reoxygenation stimulates collagen type-1 and MMP-1 expression in cardiac fibroblasts -: Modulation by the PPAR-γ ligand pioglitozone

Journal

JOURNAL OF CARDIOVASCULAR PHARMACOLOGY
Volume 44, Issue 6, Pages 682-687

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/00005344-200412000-00010

Keywords

anoxia-reoxygenation; cardiac fibroblasts; collagen; matrix metalloproteinase; nuclear factor-kappa B; peroxisome proliferatoractivated receptor-gamma

Ask authors/readers for more resources

Background: Cardiac remodeling after ischemic injury is a major cause of heart failure. In this process, fibroblast growth and collagen synthesis and degradation play a critical role. Recent studies indicate that ligands of the peroxisome proliferator-activated receptors-gamma (PPAR-gamma) alter cardiac remodeling during chronic ischemia. This study was designed to investigate if the PPAR-gamma ligand pioglitazone would modulate fibroblast growth and collagen type-I synthesis (and expression) in cardiac fibroblasts exposed to anoxia-reoxygenation (A-R). Methods and Results: Cardiac fibroblasts were exposed to anoxia (95% N-2/5% CO2) and then reoxygenation (95% air/5% CO2). A-R increased fibroblast growth (MTT assay) as well as collagen type-I synthesis (H-3-proline incorporation) and protein expression (Western analysis). Concurrently, there was a parallel increase in the expression of matrix metalloproteinase-1 (MMP-1) in fibroblasts. Pretreatment of cardiac fibroblasts with pioglitazone (10(-5) M) reduced all these effects of A-R. Further, A-R stimulated intracellular reactive oxygen species (ROS) generation and activated the redox-sensitive transcription factor NF-kappaB (both P < 0.05). Both these phenomena were inhibited by pretreatment of cells with pioglitazone. Conclusion: Thus, it appears that A-R stimulates fibroblast cell growth, collagen type-I synthesis, and MMP-1 expression in cardiac fibroblasts, most likely a result of ROS generation. Inhibition of ROS generation and induction of NF-kappaB in cardiac fibroblasts during A-R may be a mechanism of action of pioglitazone.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available