4.6 Article

Fluid modeling of electron heating in low-pressure, high-frequency capacitively coupled plasma discharges

Journal

JOURNAL OF APPLIED PHYSICS
Volume 96, Issue 11, Pages 6073-6081

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1818354

Keywords

-

Ask authors/readers for more resources

Fluid modeling approaches encounter several shortcomings when used for simulation of capacitively coupled plasma discharges, especially under low-pressure and high-frequency conditions. For example, fluid models fail to accurately predict important features such as the collisionless electron heating and the electron temperature profiles in these discharges. We improve the classical fluid modeling approach to include the full electron momentum equation instead of the approximate drift-diffusion and a nonlocal collisionless electron heat flux terms instead of the Fourier heat flux form. A one-dimensional form of the fluid model is used in our studies. Improved predictions of the collisionless electron heating effect, charged species densities, and sheath electron temperature profiles are shown. Also accurate prediction of discharge impedance characteristics in the low-pressure, high-frequency regime are demonstrated. (C) 2004 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available